Abstract
A crossover from the A-site-ordered double-perovskite structure with Im3̅ cubic symmetry to the simple-perovskite structure with Pnma orthorhombic symmetry is found in LnMn3V4O12 (Ln = La, Nd, Gd, Y, Lu) synthesized under high-pressure conditions. Relatively large Ln3+ ions (La3+, Nd3+, and Gd3+) induce the a+a+a+ in-phase cooperative tilting of the VO6 octahedra, resulting in the A-site-ordered double-perovskite structure with chemical composition Ln3+Mn2+3V3.75+4O12. Compounds with small Ln3+ ions like Y3+ and Lu3+, on the other hand, crystallize with the Pnma simple-perovskite structure with chemical composition (Ln3+1/4Mn2+3/4)V3.75+O3, where the Ln3+ and Mn2+ ions are disordered at the A site. The random distribution of the small A-site cation induces the a–b+a– tilting distortion of the VO6 octahedra. The observed phase crossover is well explained by the structural stability calculation based on the bond-valence-sum model, and the most stable crystal structure gives the smallest unit-cell volume. This A-site-cation size-dependent phase transition between the A-site-ordered double-perovskite and A-site-disordered simple-perovskite structures in LnMn3V4O12 is thus a result of the structural stability due to the cooperative tilting of the VO6 octahedra. The Mn2+ ions at the A′(A) site contribute local magnetic moments, whereas the V3.75+ ions at the B site play a role in metallic conduction. The observed magnetic behaviors are consistent with the order–disorder distribution of the Mn2+ ions at the A site, antiferromagnetism in the A-site-ordered double perovskites, and magnetic spin glass in the A-site-disordered simple perovskites.
Original language | American English |
---|---|
Pages (from-to) | 594-599 |
Number of pages | 6 |
Journal | Inorganic Chemistry |
Volume | 53 |
Issue number | 1 |
DOIs | |
State | Published - Jan 6 2014 |
Keywords
- Cations
- Chemical structure
- Ions
- Perovskite Spuds Modeling
- Transition metals
Disciplines
- Analytical Chemistry
- Other Earth Sciences
- Mineral Physics